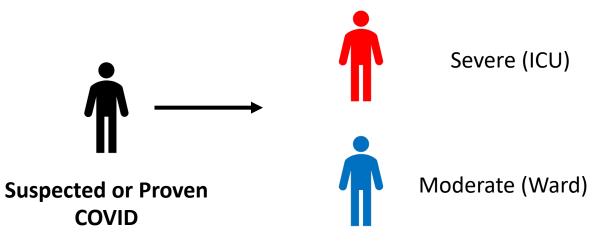
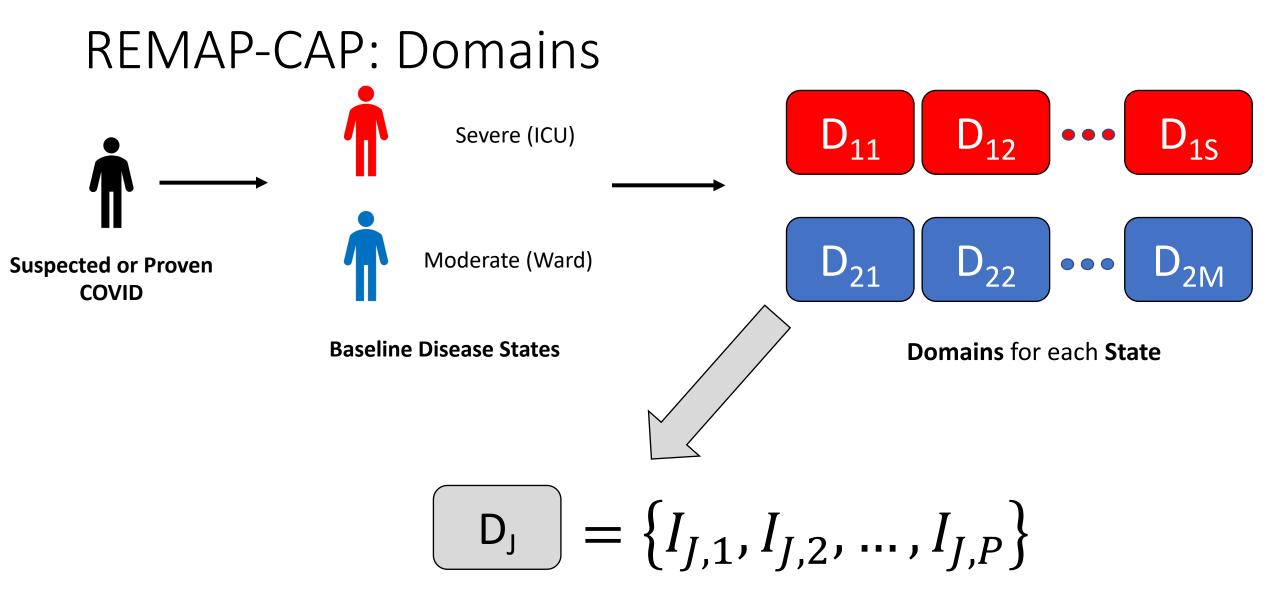
The statistical analysis of REMAP-CAP: A platform trial for COVID-19

Lindsay Berry

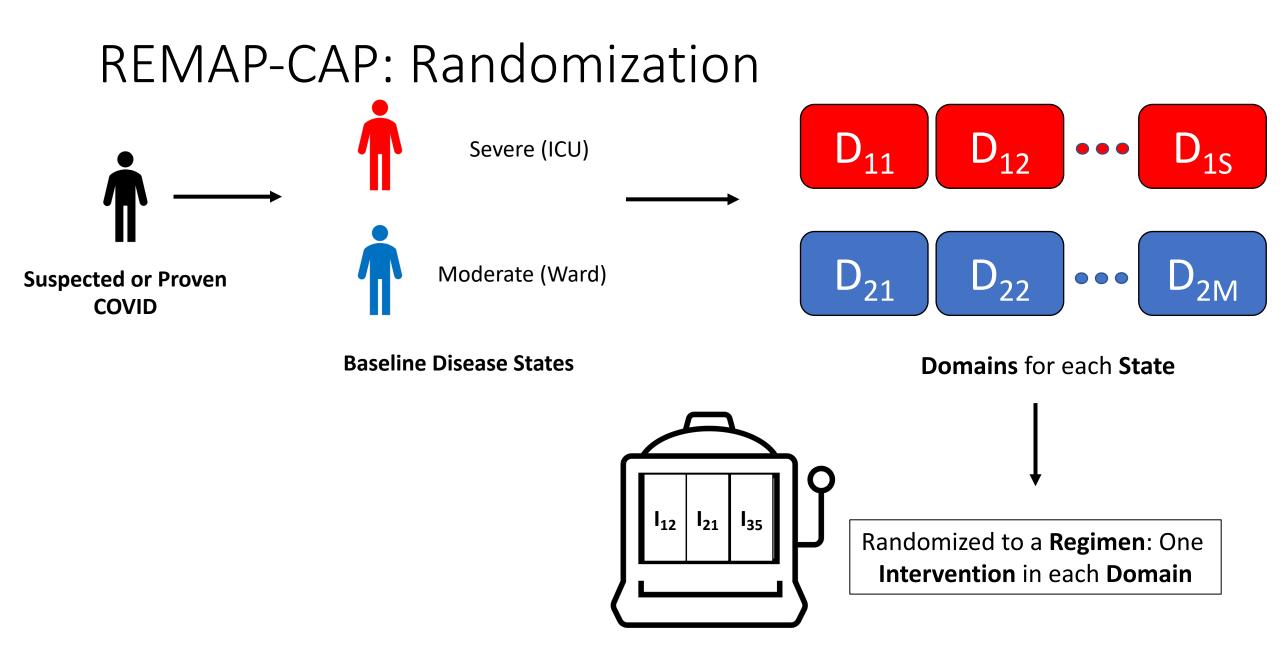
SIS 2021

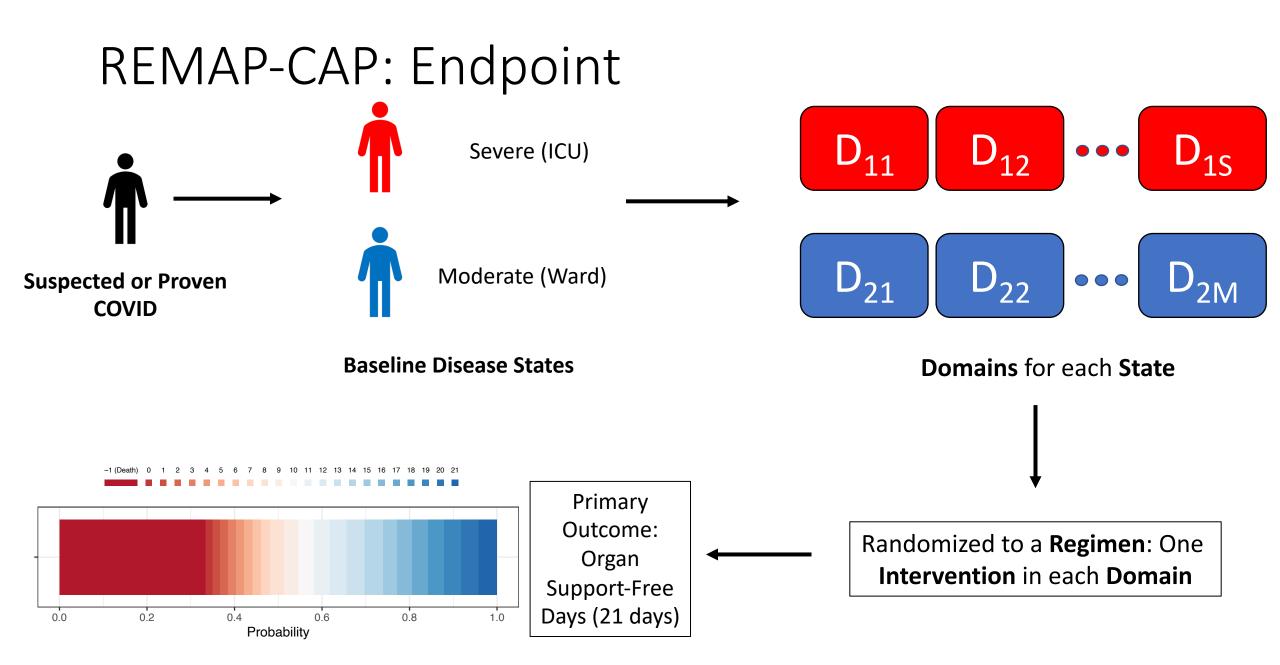
"Light methods for hard problems"



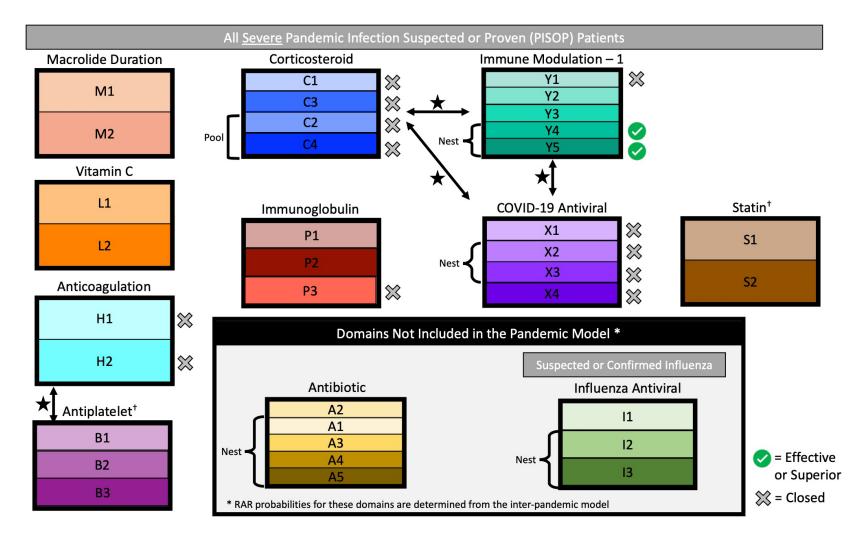

REMAP-CAP COVID-19 Response

- Pandemic preparedness was a design feature
 - "Sleeping strata" for respiratory pandemic
- Feb 2020 began enrolling COVID-19 ICU patients
 - Initial uncertainty about sample size and enrollment
 - No fixed sample size
 - Frequent adaptive analyses to evaluate success/futility and update randomization probabilities
 - New COVID-19 treatment domains (steroids, antivirals, anticoagulation, etc) and primary outcome
 - Need to incorporate/react to emerging data from external sources


REMAP-CAP: Patient Journey



Baseline Disease States


Interventions within each Domain

Domains & Interventions

- Domains/interventions added and removed
- Frequent adaptive analyses
- Drop arms for inferiority/futility
- Superiority in domain or efficacy vs control trigger public disclosure

- Primary outcome: Organ support-free days, ordinal outcome composite of in-hospital mortality (-1) and OSFD through 21 days
- Cumulative logistic (proportional odds) model

$$logit\left(\frac{\pi_k}{1-\pi_k}\right) = [k] + [Site] + [Time] + [Age] + [Sex] + \sum_{j=1}^{J} [I_j] + \sum_{j=1}^{J} [IxI]$$

- Primary outcome: Organ support-free days, ordinal outcome composite of in-hospital mortality (-1) and OSFD through 21 days
- Cumulative logistic (proportional odds) model

$$logit\left(\frac{\pi_k}{1-\pi_k}\right) = [k] + [Site] + [Time] + [Age] + [Sex] + \sum_{j=1}^{J} [I_j] + \sum_{j=1}^{J} [IxI]$$

- Baseline covariates that explain variability in outcome
- Important in the rapidly evolving pandemic environment

- Primary outcome: Organ support-free days, ordinal outcome composite of in-hospital mortality (–1) and OSFD through 21 days
- Cumulative logistic (proportional odds) model

$$logit\left(\frac{\pi_k}{1-\pi_k}\right) = [k] + [Site] + [Time] + [Age] + [Sex] + \sum_{j=1}^{J} [I_j] + \sum_{j=1}^{J} [IxI]$$

- Effect of each intervention relative to control/referent within domain
- Assume a proportional effect across ordinal outcome
- Some interventions are "nested" with a hierarchical prior
 - Ex: Two Interleukin-6 receptor antagonists (tocilizumab and sarilumab) are nested based on similar mechanism of action

- Primary outcome: Organ support-free days, ordinal outcome composite of in-hospital mortality (–1) and OSFD through 21 days
- Cumulative logistic (proportional odds) model

$$logit\left(\frac{\pi_k}{1-\pi_k}\right) = [k] + [Site] + [Time] + [Age] + [Sex] + \sum_{j=1}^{J} [I_j] +$$

- Prespecified interactions between interventions
- Ex: Interactions estimated between steroid and antiviral domains based on prior evidence of a negative interaction

- Primary outcome: Organ support-free days, ordinal outcome composite of in-hospital mortality (-1) and OSFD through 21 days
- Cumulative logistic (proportional odds) model

$$logit\left(\frac{\pi_k}{1-\pi_k}\right) = [k] + [Site] + [Time] + [Age] + [Sex] + \sum_{j=1}^{J} [I_j] + \sum_{j=1}^{J} [IxI]$$

- Response adaptive randomization (RAR) driven by this model
- At each adaptive analysis, compute the posterior probability that each treatment regimen is *optimal*
- Future participants randomized proportionally to this probability; higher probability of receiving effective regimens

REMAP-CAP

A Randomised, Embedded, Multi-factorial, Adaptive Platform Trial for Community-Acquired Pneumonia

13,911

Patient randomisations

12,460

Patient randomisations with suspected or proven COVID-19

48

Current or completed interventions in 14 Domains

7,700

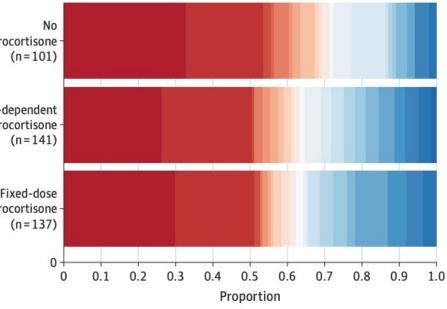
Patients with suspected or proven COVID-19

Active Sites

Analysis of corticosteroids after halting domain based on external data

JAMA | Original Investigation | CARING FOR THE CRITICALLY ILL PATIENT

Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19


The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial

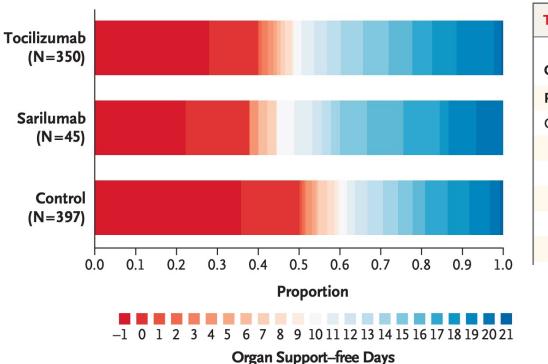
The Writing Committee for the REMAP-CAP Investigators

Organ support-free days																							
Death	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	

Table 2. Primary Outcome No Fixed-dose hydrocortisone Shock-dependent hydrocortisone hydrocortisone · Outcome/analysis^a (n = 137)(n = 141)(n=101)Primary outcome, organ support-free days Median (IQR) 0 (-1 to 15) 0 (-1 to 13) Subcomponents of organ support-free days Shock-dependent hydrocortisone · In-hospital deaths, No. (%) 41 (30) 37 (26) (n=141)Organ support-free days among survivors, 11.5 (0 to 17) 9.5 (0 to 16) median (IQR) Primary analysis of the primary outcome, using covariate data from all severe-state participants with COVID-19 (n = 576)^b Fixed-dose Adjusted odds ratio hydrocortisone -1.47 (0.35) 1.26 (0.31) Mean (SD) (n = 137)1.43 (0.91 to 2.27) Median (95% CrI) 1.22 (0.76 to 1.94) Probability of superiority to no hydrocortisone, % 80 93 0.1 0.2 0

B Organ support-free days by study group

The NEW ENGLAND JOURNAL of MEDICINE


ESTABLISHED IN 1812

APRIL 22, 2021

VOL. 384 NO. 16

Interleukin-6 Receptor Antagonists in Critically Ill Patients with Covid-19

The REMAP-CAP Investigators*

Table 2. Primary and Secondary Outcomes.*									
Outcome or Analysis		Tocilizumab (N=353)	Sarilumab (N=48)	Control (N=402)					
Primary outcome									
Organ support-free days									
Median (IQR)		10 (-1 to 16)	11 (0 to 16)	0 (-1 to 15)					
Adjusted odds ratio									
Mean		1.65±0.23	1.83±0.44	1					
Median (95% credible interval)	(1.64 (1.25 to 2.14)	1.76 (1.17 to 2.91)	1					
Probability of superiority to control — $\%$		>99.9	99.5						

Tocilizumab and sarilumab continued and met statistical trigger for "equivalence" at a later analysis

REMAP-CAP COVID-19 results

- Corticosteroids (JAMA)
 - Helped confirm benefit in severe patients
- Interleukin-6 receptor antagonists (NEJM)
 - Demonstrated benefit in severe patients
 - Later equivalence of toci/sari (paper under review)
- Anticoagulation (medRxiv; under review)
 - Demonstrated benefit in moderate patients; no benefit in severe patients
- Antiviral (under review)
 - Ruled out benefit of HCQ and Kaletra
 - Summarized the data on HCQ despite stopping early
- Immunoglobulin/convalescent plasma (medRxiv; under review)
 - Demonstrated no benefit in severe patients

Final thoughts

- Bayesian analysis model simplifies many of the challenges of interpreting a complex design in a quickly evolving situation
- Interpretable results with an unknown design, sample size, enrollment rate
- Incorporation of external data/results
- Dynamic borrowing across similar interventions
- Answer more informative questions:
 - What is the optimal treatment regimen for COVID-19?
 - Is there an interaction between corticosteroids and IL-6ra?
 - Are tocilizumab and sarilumab equivalent?

References

- https://www.remapcap.org/
- The Writing Committee for the REMAP-CAP Investigators. <u>Effect of Hydrocortisone on Mortality</u> and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid <u>Domain Randomized Clinical Trial</u>. JAMA. 2020;324(13):1317–1329. doi:10.1001/jama.2020.17022
- The REMAP-CAP Investigators. Interleukin-6 Receptor Antagonists in Critically III Patients with Covid-19. NEJM. 2021;384:1491-1502. doi:10.1056/NEJMoa2100433
- The REMAP-CAP, ACTIV-4a, ATTACC Investigators. <u>Therapeutic Anticoagulation in Critically III</u> <u>Patients with Covid-19 – Preliminary Report</u>. Pre-print, medRxiv.
- The REMAP-CAP, ACTIV-4a, ATTACC Investigators. <u>Therapeutic Anticoagulation in Non-Critically III</u> <u>Patients with Covid-19</u>. Pre-print, medRxiv.
- The REMAP-CAP Investigators. <u>Convalescent Plasma in Critically ill Patients with COVID-19</u>. Preprint, medRxiv.